Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2008 Sep;9(9):2399-407. doi: 10.1021/bm800390j. Epub 2008 Aug 15.

Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.

Author information

Departement de Chimie-CERSIM-CREFSIP, Universite Laval, Pavillon Alexandre-Vachon, Quebec G1V0A6, Canada.


The orientational and conformational transformation of the native liquid silk into a solid fiber in the major ampullate gland of the spider Nephila clavipes has been studied by Raman spectromicroscopy. The spectra show that the conformation of silk proteins in the glandular sac contains several secondary structure elements, which is consistent with intrinsically unfolded proteins. A few alpha-helices are also present and involve some alanine residues located in the polyalanine segments of the spidroin sequence. The conversion of the silk solution in the major ampullate gland appears to be a two-state process without intermediate states. In the first and second limbs of the duct, silk is isotropic and spidroins are generally native-like. beta-Sheets start to develop between the second and the third limb of the duct, suggesting that early beta-sheets are generated by shear forces. However, most of the beta-sheets are formed between the draw down taper and the valve. The early beta-sheets formed upward of the draw down taper might play the role of nucleation sites for the subsequent beta-sheet aggregation. The alignment of the polypeptides chains occurs near the valve, revealing that orientational and conformational changes do not occur simultaneously. Extensional flow seems to be the driving force to produce the orientational order, which in turn is associated with the formation of the major part of the beta-sheets. The slow evolution of the spidroin conformation up to the draw down taper followed by the rapid transformation between the drawn down taper and the valve may be important to achieve the optimal structure of the final fiber.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center