Send to

Choose Destination
Biochemistry. 2008 Sep 9;47(36):9456-66. doi: 10.1021/bi800984s. Epub 2008 Aug 13.

Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the "RGG" paradigm.

Author information

Chemistry and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, USA.


Protein arginine methyltransferase 1 (PRMT1) catalyzes the mono- and dimethylation of certain protein arginine residues. Although this posttranslational modification has been implicated in many physiological processes, the molecular basis for PRMT1 substrate recognition is poorly understood. Most modified arginine residues in known PRMT1 substrates reside in repeating "RGG" sequences. However, PRMT1 also specifically methylates Arg3 of histone H4 in a region that is not glycine-arginine rich, suggesting that PRMT1 substrates are not limited to proteins bearing "RGG" sequences. Because a systematic evaluation of PRMT1 substrate specificity has not been performed, it is unclear if the "RGG" sequence accurately represents the consensus target for PRMT1. Using a focused peptide library based on a sequence derived from the in vivo substrate fibrillarin we observed that PRMT1 methylated substrates that had amino acid residues other than glycine in the "RX (1)" and "RX (1)X (2)" positions. Importantly, eleven additional PRMT1 substrate sequences were identified. Our results also illustrate that the two residues on the N-terminal side of the modification site are important and need not both be glycine. PRMT1 methylated the eukaryotic initiation factor 4A1 (eIF4A1) protein, which has a single "RGG" sequence. Methylation of eIF4A1 and the similar eIF4A3 could be affected using single site mutations adjacent to the modification site, demonstrating the importance of amino acid sequence in PRMT1 protein substrates. Dimethylation of the parent library peptide was shown to occur through a dissociative mechanism. In summary, PRMT1 selectively recognizes a set of amino acid sequences in substrates that extend beyond the "RGG" paradigm.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center