Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2008 Oct 15;322(2):251-62. doi: 10.1016/j.ydbio.2008.07.023. Epub 2008 Jul 29.

Nitric oxide (NO) increase at fertilization in sea urchin eggs upregulates fertilization envelope hardening.

Author information

Division of Intracellular Metabolism, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan.


Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca(2+)-dependent and attributed to the late Ca(2+) rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current (t(p)) which corresponds to peak [Ca(2+)](i), suggesting that NO is not related to any other ionic changes besides [Ca(2+)](i). We measured O(2) consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O(2) consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H(2)O(2) and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H(2)O(2) production and consolidates FE hardening by H(2)O(2).

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center