Format

Send to

Choose Destination
See comment in PubMed Commons below
Channels (Austin). 2008 Jan-Feb;2(1):13-8. Epub 2008 Mar 12.

Mutations within the agonist-binding site convert the homomeric alpha1 glycine receptor into a Zn2+-activated chloride channel.

Author information

1
Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Frankfurt am Main, Germany.

Abstract

The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (<10 microM) concentrations of Zn2+ enhance glycine currents, whereas higher concentrations (>10 microM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR alpha-subunits. Here, we examined the Zn2+ sensitivity of different mutations within the agonist binding site of the homomeric alpha(1)-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that six substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (alpha(1)(R65A), alpha(1)(R131A), or of the aromatic residue phenylalanine 207 by histidine (alpha(1)(F207H)), converted the alpha(1) GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the alpha(1)(F207H) GlyR disclosed an EC(50) value of 1.2 microM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the alpha(1) subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis.

PMID:
18690053
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center