Format

Send to

Choose Destination
J Chem Phys. 2008 Jul 28;129(4):044702. doi: 10.1063/1.2949550.

The local electronic structure of alpha-Li3N.

Author information

1
Physics Department, University of Washington, Seattle, Washington 98195, USA.

Abstract

New theoretical and experimental investigations of the occupied and unoccupied local electronic densities of states (DOS) are reported for alpha-Li(3)N. Band-structure and density-functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS find less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering, RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is a good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s-and p-type components of the unoccupied local final DOS projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final DOS due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generally applicable for low atomic number compounds.

PMID:
18681665
DOI:
10.1063/1.2949550

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center