Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2008 Aug 11;182(3):421-8. doi: 10.1083/jcb.200801145. Epub 2008 Aug 4.

Microtubule cross-linking triggers the directional motility of kinesin-5.

Author information

  • 1Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, Netherlands.

Abstract

Although assembly of the mitotic spindle is known to be a precisely controlled process, regulation of the key motor proteins involved remains poorly understood. In eukaryotes, homotetrameric kinesin-5 motors are required for bipolar spindle formation. Eg5, the vertebrate kinesin-5, has two modes of motion: an adenosine triphosphate (ATP)-dependent directional mode and a diffusive mode that does not require ATP hydrolysis. We use single-molecule experiments to examine how the switching between these modes is controlled. We find that Eg5 diffuses along individual microtubules without detectable directional bias at close to physiological ionic strength. Eg5's motility becomes directional when bound between two microtubules. Such activation through binding cargo, which, for Eg5, is a second microtubule, is analogous to known mechanisms for other kinesins. In the spindle, this might allow Eg5 to diffuse on single microtubules without hydrolyzing ATP until the motor is activated by binding to another microtubule. This mechanism would increase energy and filament cross-linking efficiency.

PMID:
18678707
PMCID:
PMC2500128
DOI:
10.1083/jcb.200801145
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center