Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain. 2008 Sep;131(Pt 9):2401-13. doi: 10.1093/brain/awn170. Epub 2008 Aug 4.

Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship?

Author information

1
Clinique de Médecine Physique et Réadaptation, Hôpital Nord-CHU Grenoble, Université Grenoble 1 degrees, Unité de Rééducation Neurologique du Grau du Roi, CHU Nîmes, France. DPerennou@chu-grenoble.fr

Abstract

The relationships between perception of verticality by different sensory modalities, lateropulsion and pushing behaviour and lesion location were investigated in 86 patients with a first stroke. Participants sat restrained in a drum-like framework facing along the axis of rotation. They gave estimates of their subjective postural vertical by signalling the point of feeling upright during slow drum rotation which tilted them rightwards-leftwards. The subjective visual vertical was indicated by setting a line to upright on a computer screen. The haptic vertical was assessed in darkness by manually setting a rod to the upright. Normal estimates ranged from -2.5 degrees to 2.5 degrees for visual vertical and postural vertical, and from -4.5 degrees to 4.5 degrees for haptic vertical. Of six patients with brainstem stroke and ipsilesional lateropulsion only one had an abnormal ipsilesional postural vertical tilt (6 degrees ); six had an ipsilesional visual vertical tilt (13 +/-.4 degrees ); two had ipsilesional haptic vertical tilts of 6 degrees . In 80 patients with a hemisphere stroke (35 with contralesional lateropulsion including 6 'pushers'), 34 had an abnormal contralesional postural vertical tilt (average -8.5 +/- 4.7 degrees ), 44 had contralesional visual vertical tilts (average -7 +/- 3.2 degrees ) and 26 patients had contralesional haptic vertical tilts (-7.8 +/- 2.8 degrees ); none had ipsilesional haptic vertical or postural vertical tilts. Twenty-one (26%) showed no tilt of any modality, 41 (52%) one or two abnormal modality(ies) and 18 (22%) a transmodal contralesional tilt (i.e. PV + VV + HV). Postural vertical was more tilted in right than in left hemisphere strokes and specifically biased by damage to neural circuits centred around the primary somatosensory cortex and thalamus. This shows that thalamo-parietal projections have a functional role in the processing of the somaesthetic graviceptive information. Tilts of the postural vertical were more closely related to postural disorders than tilts of the visual vertical. All patients with a transmodal tilt showed a severe lateropulsion and 17/18 a right hemisphere stroke. This indicates that the right hemisphere plays a key role in the elaboration of an internal model of verticality, and in the control of body orientation with respect to gravity. Patients with a 'pushing' behaviour showed a transmodal tilt of verticality perception and a severe postural vertical tilt. We suggest that pushing is a postural behaviour that leads patients to align their erect posture with an erroneous reference of verticality.

PMID:
18678565
DOI:
10.1093/brain/awn170
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center