Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nucl Cardiol. 2008 Jul-Aug;15(4):576-86. doi: 10.1016/j.nuclcard.2008.05.005.

Molecular imaging of cardiovascular disease using ultrasound.

Author information

1
Center for Ultrasound Molecular Imaging and Therapeutics, Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA. villanuevafs@upmc.edu

Abstract

Molecular imaging using probes that specifically home to function- or disease-specific targets is a promising tool for both basic research investigations as well as clinical diagnostics. Ultrasound-based molecular imaging utilizes acoustically active particles (contrast agents) bearing targeting ligands that specifically bind to a molecule of interest. In the presence of an ultrasound field, the bound particles are detectable as a persistent contrast effect during ultrasound imaging. Different types of targeted contrast agents have been reported, most of which share in common the presence of a gas encapsulated by a shell of varying chemical formulation. These agents, or "microbubbles," are typically 2 to 4 mum in diameter, and have a natural resonance frequency that corresponds to the frequencies used in diagnostic echocardiography. This attribute makes it possible to induce microbubble resonance and non-linear oscillation at diagnostic ultrasound frequencies, leading to acoustic emissions from the microbubbles that can be detected as specific signals during two dimensional ultrasound imaging. Targeting ligands that have been attached to microbubbles include monoclonal antibodies, peptides, and the naturally occurring ligands for the receptor of interest, such as vascular endothelial growth factor. Because the contrast agents stay within the intravascular space, they are ideally suited for detection of endothelial epitopes, such as leukocyte adhesion molecules or angiogenesis receptors. Ultrasound molecular imaging with targeted contrast agents has been used to detect inflammation association with ischemia/reperfusion (ischemic memory), cardiac transplant rejection, early atherosclerosis, and angiogenesis. Application to tumor angiogenesis has also been reported using peptides that specifically bind to angiogenic tumor endothelium. Translation of ultrasound molecular imaging to the clinical arena will require optimization of contrast agent design to maximize specific binding, and customization of imaging systems to sensitively detect the binding events.

PMID:
18674725
PMCID:
PMC3491978
DOI:
10.1016/j.nuclcard.2008.05.005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center