Format

Send to

Choose Destination
Neuroscience. 2008 Sep 9;155(4):1142-51. doi: 10.1016/j.neuroscience.2008.06.062. Epub 2008 Jul 8.

Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study.

Author information

1
Department of Psychiatry, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06519, USA. chiang-shan.li@yale.edu

Abstract

The ability to detect errors and adjust behavior accordingly is essential for maneuvering in an uncertain environment. Errors are particularly prone to occur when multiple, conflicting responses are registered in a situation that requires flexible behavioral outputs. Previous studies have provided evidence indicating the importance of the medial cortical brain regions including the cingulate cortex in processing conflicting information. However, conflicting situations can be successfully resolved, or lead to errors, prompting a behavioral change in the observers. In particular, how does the brain use error signals specifically to adjust behavior on the fly? Here we employ a stop signal task (SST) to elicit errors approximately half of the time in high-conflict trials despite constant behavioral adjustment of the observers. Using functional magnetic resonance imaging, we show greater and, sequentially, less activation in the medial cortical regions when observers made an error, compared with when they successfully resolved high-conflict responses. Errors also evoked greater activity in the cuneus, retrosplenial cortex, insula, and subcortical structures including the thalamus and the region of the epithalamus (the habenula). We further showed that the error-related medial cortical activities are not correlated with post-error behavioral adjustment, as indexed by post-error slowing (PES) in go trial reaction time. These results delineate an error-specific pattern of brain activation during the SST. The results also suggest that the relationship between error-related activity and post-error behavioral adjustment may be more complicated than has been conceptualized by the conflict monitoring hypothesis.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center