Format

Send to

Choose Destination
Biochemistry. 2008 Aug 26;47(34):9029-39. doi: 10.1021/bi8003846. Epub 2008 Aug 2.

Regulation of G protein-coupled receptor activities by the platelet-endothelial cell adhesion molecule, PECAM-1.

Author information

1
La Jolla Bioengineering Institute, 505 Coast Boulevard South, Suite 406, La Jolla, California 92037, USA.

Abstract

It is becoming increasingly evident that the cell-cell junction is a major signaling center. Here we show that the Galphaq/11 subunit of heterotrimeric G proteins forms a complex with platelet-endothelial cell adhesion molecule 1 (PECAM-1), a junctional protein that has been shown to be involved in mechanosignaling in endothelial cells. To understand the role of PECAM-1 in this complex, we determined the critical regions of PECAM-1 involved in this interaction. By expressing truncated forms of PECAM-1 in human embryonic kidney (HEK293) cells, we found that the cytoplasmic domain of PECAM-1 is not required for its association with Galphaq/11. Domain swapping of PECAM-1 with intracellular cell adhesion molecule 1 (ICAM-1), a protein that does not form a complex with Galphaq/11, provides evidence that the extracellular domain of PECAM-1 is critical for this interaction. This result also suggests that PECAM-1 does not directly interact with Galphaq/11. Coexpression of bradykinin receptor B2 (BKRB2), a Galphaq/11-coupled receptor, with PECAM-1 enhances formation of the PECAM-1-Galphaq/11 complex, suggesting an interaction between PECAM-1 and BKRB2. Co-immunoprecipitation experiments indicate that these two molecules indeed form a complex when expressed in HEK293 cells. Activation of ERK1/2 by bradykinin in HUVEC is enhanced when PECAM-1 expression is inhibited by transfection of small interference RNA against PECAM-1. Taken together, our results provide evidence of interaction of PECAM-1 with BKRB2 and of its possible role in regulating G protein-coupled receptor (GPCR) and G protein functions.

PMID:
18672896
DOI:
10.1021/bi8003846
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center