Send to

Choose Destination
Yao Xue Xue Bao. 2008 Apr;43(4):408-14.

[Preparation and properties of self-assemble paclitaxel-loaded core-shell type nano-micelles].

[Article in Chinese]

Author information

School of Pharmaceutical Sciences, First Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080, China.


Polyethylene glycol-polybenzyl-L-glutamate copolymer (PEG-PBLG) was synthesized and paclitaxel-loaded core-shell type nano-micelles with amphiphilic copolymer PEG-PBLG was prepared by the dialysis method. The drug loading content and entrapment efficiency were determined by HPLC. The average size and its distribution were determined by dynamic light scattering method. The paclitaxel release rate in vitro from micelles was measured by HPLC. The cell cytotoxicity in vitro was observed with MTT assay. The anti-tumor activity of paclitaxel-loaded micelles were evaluated in tumor-inhibiting test of nude mice using human liver cancer HepG-2. The results indicated that paclitaxel could be entrapped in PEG-PBLG copolymer micelles and its size was in the range of 80-265 nm which increased with an increase in molecular weight of PBLG in copolymer; in vitro the paclitaxel could be released sustainably from the micelles. In high concentration of paclitaxel (>20 microg x mL(-1)) the paclitaxel-loaded PEG-PBLG micelles displayed much less cell cytotoxicity than paclitaxel injections with Cremophor EL (P<0.05); the tumor inhibiting activity of paclitaxel-loaded PEG-PBLG micelles was similar to that of paclitaxel injections with Cremophor EL in the same paclitaxel concentration. It was concluded that the paclitaxel-loaded PEG-PBLG micelles had more uniform size and size distribution, excellent drug sustainable-release behavior, less cytotoxicity, good anti-tumor activity similar to paclitaxel injections with Cremophor EL. So paclitaxel-loaded PEG-PBLG micelles would be a novel paclitaxel preparation in clinic for the treatment of tumor.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center