Send to

Choose Destination
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Sep;194(9):829-39. doi: 10.1007/s00359-008-0354-y. Epub 2008 Jul 29.

Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions.

Author information

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Edificio de Ciencias Experimentais, 36310, Vigo, Spain.


To evaluate the possible role of glucose in the control of food intake (FI) in fish and the involvement of glucosensing system in that role, we have subjected rainbow trout (via intraperitoneal injections) to control, hyperglycemic (500 mg kg(-1) glucose body mass) or hypoglycemic (4 mg kg(-1) bovine insulin) conditions for 10 days. The experimental design was appropriate since hypoglycemia and hyperglycemia were observed the first 5 days after treatment and changes observed in metabolic parameters in liver were similar to those of fish literature. Hyperglycemic conditions elicited small changes in FI accompanied by increased glucose and glycogen levels, glucokinase (GK) activity and glycolytic potential in hypothalamus and hindbrain. In contrast, hypoglycemic conditions elicited a marked increase in FI accompanied by decreased glucose and glycogen levels and GK activity in the same brain regions whereas both regions displayed different responses in glycolytic potential. These results allow us to hypothesize that, despite the relative intolerance to glucose of carnivorous fish, changes in plasma glucose levels in rainbow trout detected by glucosensing areas in brain regions (hypothalamus and hindbrain) are integrated in those or near areas eliciting a response in FI, which was more important under hypoglycemic than under hyperglycemic conditions.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center