Send to

Choose Destination
Nat Nanotechnol. 2007 Dec;2(12):790-5. doi: 10.1038/nnano.2007.380. Epub 2007 Dec 2.

Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties.

Author information

School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea.


We describe a versatile approach for preparing flash memory devices composed of polyelectrolyte/gold nanoparticle multilayer films. Anionic gold nanoparticles were used as the charge storage elements, and poly(allylamine)/poly(styrenesulfonate) multilayers deposited onto hafnium oxide (HfO2)-coated silicon substrates formed the insulating layers. The top contact was formed by depositing HfO2 and platinum. In this study, we investigated the effect of increasing the number of polyelectrolyte and gold nanoparticle layers on memory performance, including the size of the memory window (the critical voltage difference between the 'programmed' and 'erased' states of the devices) and programming speed. We observed a maximum memory window of about 1.8 V, with a stored electron density of 4.2 x 1012 cm-2 in the gold nanoparticle layers, when the devices consist of three polyelectrolyte/gold nanoparticle layers. The reported approach offers new opportunities to prepare nanostructured polyelectrolyte/gold nanoparticle-based memory devices with tailored performance.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center