Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2008 Sep 1;42(3):1078-93. doi: 10.1016/j.neuroimage.2008.05.008. Epub 2008 May 16.

A unified framework for group independent component analysis for multi-subject fMRI data.

Author information

  • 1Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University, 1518 Clifton RD NE, Atlanta, GA 30322, USA. yguo2@sph.emory.edu

Abstract

Independent component analysis (ICA) is becoming increasingly popular for analyzing functional magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject analysis, the extension of ICA to group inferences is not straightforward and remains an active topic of research. Current group ICA models, such as the GIFT [Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., 2001. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140-151.] and tensor PICA [Beckmann, C.F., Smith, S.M., 2005. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25, 294-311.], make different assumptions about the underlying structure of the group spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure, potentially leading to diverging results. To our knowledge, there are currently no methods for assessing the validity of different model structures in real fMRI data and selecting the most appropriate one among various choices. In this paper, we propose a unified framework for estimating and comparing group ICA models with varying spatio-temporal structures. We consider a class of group ICA models that can accommodate different group structures and include existing models, such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different group ICA models. The LRT can be used to perform model comparison and selection, to assess the goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal time courses between subject subgroups. Simulation studies are conducted to evaluate the performance of the proposed method under varying structures of group spatio-temporal processes. We illustrate our group ICA method using data from an fMRI study that investigates changes in neural processing associated with the regular practice of Zen meditation.

PMID:
18650105
PMCID:
PMC2853771
DOI:
10.1016/j.neuroimage.2008.05.008
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center