Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Microbiol. 2008 Oct;10(10):2692-703. doi: 10.1111/j.1462-2920.2008.01690.x. Epub 2008 Jul 17.

Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal.

Author information

1
Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA.

Abstract

Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal, but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for global dispersal of particular Candidatus Accumulibacter strains, which we hypothesize is facilitated by the ability of Candidatus Accumulibacter to persist in environmental habitats. In the current study, we used sequencing of a phylogenetic marker, the ppk1 gene, to characterize Candidatus Accumulibacter populations in diverse environments, at varying distances from WWTPs. We discovered several new lineages of Candidatus Accumulibacter which had not previously been detected in WWTPs, and also uncovered new diversity and structure within previously detected lineages. Habitat characteristics were found to be a key determinant of Candidatus Accumulibacter lineage distribution while, as predicted, geographic distance played little role in limiting dispersal on a regional scale. However, on a local scale, enrichment of particular Candidatus Accumulibacter lineages in WWTP appeared to impact local environmental populations. These results provide evidence of ecological differences among Candidatus Accumulibacter lineages.

PMID:
18643843
PMCID:
PMC2561248
DOI:
10.1111/j.1462-2920.2008.01690.x
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID, Grant support

Publication type

MeSH terms

Substances

Secondary source ID

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center