Send to

Choose Destination
J Nutr. 2008 Aug;138(8):1437-44.

Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs.

Author information

Department of Human Nutrition, University of Copenhagen, DK-1958 Frederiksberg, Denmark.


Following preterm birth, bacterial colonization and enteral formula feeding predispose neonates to gut dysfunction and necrotizing enterocolitis (NEC), a serious gastrointestinal inflammatory disease. We hypothesized that administration of probiotics would beneficially influence early bacterial colonization, thereby reducing the susceptibility to formula-induced gut atrophy, dysfunction, and NEC. Caesarean-delivered preterm pigs were provided total parenteral nutrition (1.5 d) followed by enteral feeding (2 d) with porcine colostrum (COLOS; n = 5), formula (FORM; n = 9), or formula with probiotics (FORM-P; Bifidobacterium animalis and Lactobacillus: L. acidophilus, L. casei, L. pentosus, L. plantarum; n = 13). Clinical NEC scores were reduced (P < 0.05) in FORM-P (2.0 +/- 0.2) and COLOS groups (1.7 +/- 0.5) compared with FORM pigs (3.4 +/- 0.6). Lower NEC scores were associated with elevated intestinal weight, mucosa proportion, villus height, RNA integrity, and brush border aminopeptidase A and N activities, and lower gastric organic acid concentration in the FORM-P and COLOS groups (P < 0.05). Diversity of the mucosa-associated bacteria in the distal small intestine was similar among formula-fed pigs, yet the abundance of specific bacterial groups differed between FORM-P and FORM pigs. FORM-P pigs had lower colonization density of a potential pathogen, Clostridium perfringens, and had commensal Lactobacillus bacteria more closely associated with enterocytes along the villus-crypt axis relative to FORM pigs. These results suggest that probiotic administration immediately after birth promotes the colonization of a beneficial commensal microbiota capable of limiting the formula-induced mucosal atrophy, dysfunction, and pathogen load in preterm neonates, thereby reducing the incidence and severity of NEC.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center