Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Sep 12;283(37):25628-37. doi: 10.1074/jbc.M804291200. Epub 2008 Jul 18.

Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease.

Author information

Department of Anesthesiology, University of Rochester, University Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.


Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the PPAR family of transcription factors. Synthetic PPARgamma agonists are used as oral anti-hyperglycemic drugs for the treatment of non-insulin-dependent diabetes. However, emerging evidence indicates that PPARgamma activators can also prevent or attenuate neurodegeneration. Given these previous findings, the focus of this report is on the potential neuroprotective role of PPARgamma activation in preventing the loss of mitochondrial function in Huntington disease (HD). For these studies we used striatal cells that express wild-type (STHdh(Q7/Q7)) or mutant (STHdh(Q111/Q111)) huntingtin protein at physiological levels. Treatment of mutant cells with thapsigargin resulted in a significant decrease in mitochondrial calcium uptake, an increase in reactive oxygen species production, and a significant decrease in mitochondrial membrane potential. PPARgamma activation by rosiglitazone prevented the mitochondrial dysfunction and oxidative stress that occurred when mutant striatal cells were challenged with pathological increases in calcium. The beneficial effects of rosiglitazone were likely mediated by activation of PPARgamma, as all protective effects were prevented by the PPARgamma antagonist GW9662. Additionally, the PPARgamma signaling pathway was significantly impaired in the mutant striatal cells with decreases in PPARgamma expression and reduced PPARgamma transcriptional activity. Treatment with rosiglitazone increased mitochondrial mass levels, suggesting a role for the PPARgamma pathway in mitochondrial function in striatal cells. Altogether, this evidence indicates that PPARgamma activation by rosiglitazone attenuates mitochondrial dysfunction in mutant huntingtin-expressing striatal cells, and this could be an important therapeutic avenue to ameliorate the mitochondrial dysfunction that occurs in HD.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center