Format

Send to

Choose Destination
See comment in PubMed Commons below
Aquat Toxicol. 2008 Aug 29;89(2):113-21. doi: 10.1016/j.aquatox.2008.06.007. Epub 2008 Jun 17.

Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc).

Author information

1
College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, PR China.

Abstract

Effects of two fertilizers, NH(4)Cl and KCl, on the growth of the edible cyanobacterium Ge-Xian-Mi (Nostoc) and four other cyanobacterial strains were compared at pH 8.3+/-0.2 and 25 degrees C. Their growth was decreased by at least 65% at 10 mmol L(-1) NH(4)Cl but no inhibitory effect was observed at the same level of KCl. Meanwhile, the strains exhibited a great variation of sensitivity to NH(4)(+) toxicity in the order: Ge-Xian-Mi>Anabaena azotica FACHB 118>Microcystis aeruginosa FACHB 905>M. aeruginosa FACHB 315>Synechococcus FACHB 805. The 96-h EC(50) value for relative growth rate with regard to NH(4)(+) for Ge-Xian-Mi was 1.105 mmol L(-1), which was much less than the NH(4)(+) concentration in many agricultural soils (2-20 mmol L(-1)). This indicated that the use of ammonium as nitrogen fertilizer was responsible for the reduced resource of Ge-Xian-Mi in the paddy field. After 96 h exposure to 1 mmol L(-1) NH(4)Cl, the photosynthetic rate, F(v)/F(m) value, saturating irradiance for photosynthesis and PSII activity of Ge-Xian-Mi colonies were remarkably decreased. The chlorophyll synthesis of Ge-Xian-Mi was more sensitive to NH(4)(+) toxicity than phycobiliproteins. Thus, the functional absorption cross section of Ge-Xian-Mi PSII was increased markedly at NH(4)Cl levels >or=1 mmol L(-1) and the electron transport on the acceptor side of PSII was significantly accelerated by NH(4)Cl addition >or=3 mmol L(-1). Dark respiration of Ge-Xian-Mi was significantly increased by 246% and 384% at 5 and 10 mmol L(-1) NH(4)Cl, respectively. The rapid fluorescence rise kinetics indicated that the oxygen-evolving complex of PSII was the inhibitory site of NH(4)(+).

PMID:
18640729
DOI:
10.1016/j.aquatox.2008.06.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center