Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10256-61. doi: 10.1073/pnas.0801336105. Epub 2008 Jul 16.

Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury.

Author information

1
Department of Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.

Erratum in

  • Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12636.

Abstract

The nitrite anion is reduced to nitric oxide (NO*) as oxygen tension decreases. Whereas this pathway modulates hypoxic NO* signaling and mitochondrial respiration and limits myocardial infarction in mammalian species, the pathways to nitrite bioactivation remain uncertain. Studies suggest that hemoglobin and myoglobin may subserve a fundamental physiological function as hypoxia dependent nitrite reductases. Using myoglobin wild-type ((+/+)) and knockout ((-/-)) mice, we here test the central role of myoglobin as a functional nitrite reductase that regulates hypoxic NO* generation, controls cellular respiration, and therefore confirms a cytoprotective response to cardiac ischemia-reperfusion (I/R) injury. We find that myoglobin is responsible for nitrite-dependent NO* generation and cardiomyocyte protein iron-nitrosylation. Nitrite reduction to NO* by myoglobin dynamically inhibits cellular respiration and limits reactive oxygen species generation and mitochondrial enzyme oxidative inactivation after I/R injury. In isolated myoglobin(+/+) but not in myoglobin(-/-) hearts, nitrite treatment resulted in an improved recovery of postischemic left ventricular developed pressure of 29%. In vivo administration of nitrite reduced myocardial infarction by 61% in myoglobin(+/+) mice, whereas in myoglobin(-/-) mice nitrite had no protective effects. These data support an emerging paradigm that myoglobin and the heme globin family subserve a critical function as an intrinsic nitrite reductase that regulates responses to cellular hypoxia and reoxygenation [corrected]

PMID:
18632562
PMCID:
PMC2481313
DOI:
10.1073/pnas.0801336105
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center