Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9892-6. doi: 10.1073/pnas.0804257105. Epub 2008 Jul 16.

Interaction of nitric oxide with a functional model of cytochrome c oxidase.

Author information

1
Department of Chemistry, Stanford University, Stanford, CA 94305, USA. jpc@stanford.edu

Abstract

Cytochrome c oxidase (CcO) is a multimetallic enzyme that carries out the reduction of O2 to H2O and is essential to respiration, providing the energy that powers all aerobic organisms by generating heat and forming ATP. The oxygen-binding heme a(3) should be subject to fatal inhibition by chemicals that could compete with O2 binding. Near the CcO active site is another enzyme, NO synthase, which produces the gaseous hormone NO. NO can strongly bind to heme a(3), thus inhibiting respiration. However, this disaster does not occur. Using functional models for the CcO active site, we show how NO inhibition is avoided; in fact, it is found that NO can protect the respiratory enzyme from other inhibitors such as cyanide, a classic poison.

PMID:
18632561
PMCID:
PMC2481353
DOI:
10.1073/pnas.0804257105
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center