Format

Send to

Choose Destination

Splice site requirements and switches in plants.

Author information

1
Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA. maryschu@uiuc.edu

Abstract

Intron sequences in nuclear pre-mRNAs are excised with either the major U2 snRNA-dependent spliceosomal pathway or the minor U12 snRNA-dependent spliceosomal pathway that exist in most eukaryotic organisms. While the predominant dinucleotides bordering each of these types of introns and the catalytic mechanism used in their excision are conserved in plants and animals, several features aiding in the recognition of plant introns are distinct from those in animals and yeast. Along with their short length, high AU content and high variation in their 5' and 3' splice sites and branchpoint consensus sequences are the most prominent characteristics of plant introns. Detailed surveys of site-directed mutant introns tested in vivo and chemically induced and naturally mutant introns analyzed in planta emphasize the effects of changing individual nucleotides in these splice site consensus sequences and highlight a number of noncanonical dinucleotides that are functional in plant systems.

PMID:
18630746
DOI:
10.1007/978-3-540-76776-3_3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center