Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2008 Oct;95(8):4013-24. doi: 10.1529/biophysj.107.122598. Epub 2008 Jul 11.

Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions.

Author information

Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.


Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may also play a significant role in regulating migration. Although biophysical properties of two-dimensional substrates have been shown to significantly influence cell migration, elucidating factors governing migration in a three-dimensional environment is a relatively new avenue of research. Here, we investigate the effect of the three-dimensional microstructure, specifically the pore size and Young's modulus, of collagen-glycosaminoglycan scaffolds on the migratory behavior of individual mouse fibroblasts. We observe that the fibroblast migration, characterized by motile fraction as well as locomotion speed, decreases as scaffold pore size increases across a range from 90 to 150 mum. Directly testing the effects of varying strut Young's modulus on cell motility showed a biphasic relationship between cell speed and strut modulus and also indicated that mechanical factors were not responsible for the observed effect of scaffold pore size on cell motility. Instead, in-depth analysis of cell locomotion paths revealed that the distribution of junction points between scaffold struts strongly modulates motility. Strut junction interactions affect local directional persistence as well as cell speed at and away from the junctions, providing a new biophysical mechanism for the governance of cell motility by the extracellular microstructure.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center