Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2008 Sep 15;45(6):885-96. doi: 10.1016/j.freeradbiomed.2008.06.019. Epub 2008 Jun 27.

The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation.

Author information

  • 1Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea.


Reactive oxygen species (ROS) have been implicated in the regulation of NF-kappaB activation, which plays an important role in inflammation and cell survival. However, the molecular mechanisms of ROS in NF-kappaB activation remain poorly defined. We found that the non-provitamin A carotenoid, lutein, decreased intracellular H(2)O(2) accumulation by scavenging superoxide and H(2)O(2) and the NF-kappaB-regulated inflammatory genes, iNOS, TNF-alpha, IL-1beta, and cyclooxygenase-2, in lipopolysaccharide (LPS)-stimulated macrophages. Lutein inhibited LPS-induced NF-kappaB activation, which highly correlated with its inhibitory effect on LPS-induced IkappaB kinase (IKK) activation, IkappaB degradation, nuclear translocation of NF-kappaB, and binding of NF-kappaB to the kappaB motif of the iNOS promoter. This compound inhibited LPS- and H(2)O(2)-induced increases in phosphatidylinositol 3-kinase (PI3K) activity, PTEN inactivation, NF-kappaB-inducing kinase (NIK), and Akt phosphorylation, which are all upstream of IKK activation, but did not affect the interaction between Toll-like receptor 4 and MyD88 and the activation of mitogen-activated protein kinases. The NADPH oxidase inhibitor apocynin and gp91(phox) deletion reduced the LPS-induced NF-kappaB signaling pathway as lutein did. Moreover, lutein treatment and gp91(phox) deletion decreased the expressional levels of the inflammatory genes in vivo and protected mice from LPS-induced lethality. Our data suggest that H(2)O(2) modulates IKK-dependent NF-kappaB activation by promoting the redox-sensitive activation of the PI3K/PTEN/Akt and NIK/IKK pathways. These findings further provide new insights into the pathophysiological role of intracellular H(2)O(2) in the NF-kappaB signal pathway and inflammatory process.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center