Send to

Choose Destination
FEBS J. 2008 Aug;275(15):3944-58. doi: 10.1111/j.1742-4658.2008.06540.x. Epub 2008 Jul 4.

New insights into the functions and N-glycan structures of factor X activator from Russell's viper venom.

Author information

Graduate Institute of Biochemical Sciences, National Taiwan University, Taiwan.


The coagulation factor X activator from Russell's viper venom (RVV-X) is a heterotrimeric glycoprotein. In this study, its three subunits were cloned and sequenced from the venom gland cDNAs of Daboia siamensis. The deduced heavy chain sequence contained a C-terminal extension with four additional residues to that published previously. Both light chains showed 77-81% identity to those of a homologous factor X activator from Vipera lebetina venom. Far-western analyses revealed that RVV-X could strongly bind protein S, in addition to factors X and IX. This might inactivate protein S and potentiate the disseminated intravascular coagulation syndrome elicited by Russell's viper envenomation. The N-glycans released from each subunit were profiled and sequenced by MALDI-MS and MS/MS analyses of the permethyl derivatives. All the glycans, one on each light chain and four on the heavy chain, showed a heterogeneous pattern, with a combination of variable terminal fucosylation and sialylation on multiantennary complex-type sugars. Amongst the notable features were the presence of terminal Lewis and sialyl-Lewis epitopes, as confirmed by western blotting analyses. As these glyco-epitopes have specific receptors in the vascular system, they possibly contribute to the rapid homing of RVV-X to the vascular system, as supported by the observation that slower and fewer fibrinogen degradation products are released by desialylated RVV-X than by native RVV-X.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center