Send to

Choose Destination
Blood. 2008 Sep 15;112(6):2318-26. doi: 10.1182/blood-2008-05-156331. Epub 2008 Jul 9.

Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis.

Author information

Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.


Lymphatic vessel growth and activation, mediated by vascular endothelial growth factor (VEGF)-C and/or VEGF-A, have important roles in metastasis and in chronic inflammation. We aimed to comprehensively identify downstream molecular targets induced by VEGF-A or VEGF-C in lymphatic endothelium by analyzing the time-series transcriptional profile of treated human dermal lymphatic endothelial cells (LECs). We identified a number of genes, many not previously known to be involved in lymphangiogenesis, that were characterized either as early response genes, transiently induced genes, or progressively induced genes. Endothelial-specific molecule-1 (ESM-1) was one of the genes that were most potently induced by both VEGF-A and VEGF-C. Whereas ESM-1 induction by VEGF-A was mainly dependent on activation of VEGFR-2, VEGF-C-mediated induction depended on the activity of both VEGFR-2 and VEGFR-3. Incubation of LECs with ESM-1 increased the stimulatory effects of both VEGF-A and VEGF-C on LEC proliferation and migration, whereas ESM-1 alone had no effect. Importantly, VEGF-A (or VEGF-C) induction of LEC proliferation and migration were significantly inhibited by siRNA-mediated silencing of ESM-1 in vitro and in vivo. These studies reveal ESM-1 as a novel mediator of lymphangiogenesis and as a potential target for the inhibition of pathologic lymphatic vessel activation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center