Format

Send to

Choose Destination
Cortex. 2008 Sep;44(8):1037-66. doi: 10.1016/j.cortex.2008.04.004. Epub 2008 May 23.

Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems.

Author information

1
Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. jschmahmann@partners.org

Abstract

Disconnection syndromes were originally conceptualized as a disruption of communication between different cerebral cortical areas. Two developments mandate a re-evaluation of this notion. First, we present a synopsis of our anatomical studies in monkey elucidating principles of organization of cerebral cortex. Efferent fibers emanate from every cortical area, and are directed with topographic precision via association fibers to ipsilateral cortical areas, commissural fibers to contralateral cerebral regions, striatal fibers to basal ganglia, and projection subcortical bundles to thalamus, brainstem and/or pontocerebellar system. We note that cortical areas can be defined by their patterns of subcortical and cortical connections. Second, we consider motor, cognitive and neuropsychiatric disorders in patients with lesions restricted to basal ganglia, thalamus, or cerebellum, and recognize that these lesions mimic deficits resulting from cortical lesions, with qualitative differences between the manifestations of lesions in functionally related areas of cortical and subcortical nodes. We consider these findings on the basis of anatomical observations from tract tracing studies in monkey, viewing them as disconnection syndromes reflecting loss of the contribution of subcortical nodes to the distributed neural circuits. We introduce a new theoretical framework for the distributed neural circuits, based on general, and specific, principles of anatomical organization, and on the architecture of the nodes that comprise these systems. We propose that neural architecture determines function, i.e., each architectonically distinct cortical and subcortical area contributes a unique transform, or computation, to information processing; anatomically precise and segregated connections between nodes define behavior; and association fiber tracts that link cerebral cortical areas with each other enable the cross-modal integration required for evolved complex behaviors. This model enables the formulation and testing of future hypotheses in investigations using evolving magnetic resonance imaging techniques in humans, and in clinical studies in patients with cortical and subcortical lesions.

PMID:
18614161
PMCID:
PMC3738020
DOI:
10.1016/j.cortex.2008.04.004
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center