Send to

Choose Destination
Planta Med. 2008 Aug;74(10):1269-75. doi: 10.1055/s-2008-1074580. Epub 2008 Jul 8.

In vitro metabolic stability and intestinal transport of P57AS3 (P57) from Hoodia gordonii and its interaction with drug metabolizing enzymes.

Author information

National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA.


Hoodia gordonii, a succulent cactus-like plant growing in South Africa, has been used in traditional medicine for its appetite suppressant properties. Its use as a dietary supplement to promote weight loss has recently gained popularity. An oxypregnane steroidal glycoside P57AS3 (P57) is reported to be the active constituent of the sap extract responsible for anorexigenic activity. No information is available about its metabolic stability, intestinal transport and interaction with drug metabolizing enzymes. In the present investigation, the metabolic stability of P57 in human liver microsomes and its interaction with drug metabolizing enzymes (CYP1A2, 2C9, 3A4 and 2D6) were determined. Intestinal transport of P57 was studied in the Caco-2 cell model of intestinal transport and absorption. P57 was metabolically stable in the presence of human liver microsomes. The compound inhibited CYP3A4 activity with an IC50 value of 45 microM, whereas the activity of CYP 1A2, 2C9 and 2D6 was not inhibited. In the Caco-2 model, P57 exhibited a higher transport in the secretory direction than in the absorptive direction with efflux ratios of 3.1 and 3.8 at 100 and 200 microM, respectively. The efflux was inhibited by selective inhibitors of multidrug resistance associated proteins MRP1/MRP2 (MK-571) and P-gp (verapamil). In conclusion, intestinal transport of P57 was mediated by P-gp and MRP transporters. The compound was metabolically stable and showed weak inhibition of CYP 3A4.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Georg Thieme Verlag Stuttgart, New York
Loading ...
Support Center