Format

Send to

Choose Destination
See comment in PubMed Commons below
Amyotroph Lateral Scler. 2008 Aug;9(4):238-48. doi: 10.1080/17482960802163622.

Whole brain-based computerized neuroimaging in ALS and other motor neuron disorders.

Author information

1
Department of Neurology, Friedrich-Schiller-University Jena, Jena, Germany.

Abstract

Advanced neuroimaging applications to patients suffering from ALS and other motor neuron disorders (MND) have a high potential in terms of understanding the pathophysiology and visualizing the in vivo pathoanatomy of the diseases. In this context, particularly observer-independent computerized analyses of magnetic resonance imaging (MRI) data are of special interest since they overcome shortcomings of region-of-interest-based techniques. For three-dimensional structural T1-weighted MRI of the whole brain, voxel-based morphometry (VBM) has proven the most valuable approach to analyse regional volume alterations of the grey or white matter at group level. For the analysis of the white matter integrity with respect to tissue diffusivity and white matter connectivity including fibre tracking algorithms, diffusion tensor imaging (DTI) which can also be performed on a whole brain-basis is of the highest potential to date. Both VBM and DTI have been applied to various MND, in particular ALS, in multiple studies over recent years and have substantially broadened our knowledge about their in vivo pathoanatomy and mechanisms of neurodegeneration. Especially both the degree of damage to motor areas and the involvement of non-motor areas are of interest to be subjected to quantitative assessment, in order to establish quantitative surrogate markers for disease progression usable in clinical trials. Here, the technical state-of-the-art and the results of VBM and DTI studies in MND as the current state are reviewed, and future perspectives for further neuroimaging applications are highlighted.

PMID:
18608107
DOI:
10.1080/17482960802163622
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center