Format

Send to

Choose Destination
PLoS Pathog. 2008 Jul 4;4(7):e1000095. doi: 10.1371/journal.ppat.1000095.

APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication.

Author information

1
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.

Abstract

APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle. Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function. Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons. These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism.

PMID:
18604271
PMCID:
PMC2435275
DOI:
10.1371/journal.ppat.1000095
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center