Send to

Choose Destination
Gastroenterology. 2008 Aug;135(2):642-59. doi: 10.1053/j.gastro.2008.04.038. Epub 2008 May 15.

Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage.

Author information

Department of Medicine II, Gastroenterology and Hepatology, University Hospital, Mannheim, Germany.



The profibrogenic role of transforming growth factor (TGF)-beta in liver has mostly been attributed to hepatic stellate cell activation and excess matrix synthesis. Hepatocytes are believed to contribute to increased rates of apoptosis.


Primary hepatocyte outgrowths and AML12 cells were used as an in vitro model to detect TGF-beta effects on the cellular phenotype and expression profile. Furthermore, a transgenic mouse model was used to determine the outcome of hepatocyte-specific Smad7 expression on fibrogenesis following CCl(4)-dependent damage. Samples from patients with chronic liver diseases were assessed for (partial) epithelial-to-mesenchymal transition (EMT) in hepatocytes.


In primary cell cultures and in vivo, the majority of hepatocytes survive despite activated TGF-beta signaling. These cells display phenotypic changes and express proteins characteristic for (partial) EMT and fibrogenesis. Experimental expression of Smad7 in hepatocytes of mice attenuated TGF-beta signaling and EMT, resulted in less accumulation of interstitial collagens, and improved CCl(4)-provoked liver damage and fibrosis scores compared with controls.


The data indicate that hepatocytes undergo TGF-beta-dependent EMT-like phenotypic changes and actively participate in fibrogenesis. Furthermore, ablation of TGF-beta signaling specifically in this cell type is sufficient to blunt the fibrogenic response.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science Icon for Zurich Open Access Repository and Archive
Loading ...
Support Center