Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2008 Sep 12;374(1):101-5. doi: 10.1016/j.bbrc.2008.06.102. Epub 2008 Jul 9.

Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes.

Author information

1
Department of Medical Genetics, Second Military Medical University, 800 XiangYin Road, Shanghai 200433, PR China.

Abstract

The biological mechanism of a recent discovered association of type 2 diabetes with the ACAA-insertion/deletion polymorphism at the 3'UTR of the IGF2R gene has remained unclear. A very recently emerging novel polymorphic control layer by microRNAs (miRNAs) makes it possible to elucidate this issue. In this study, a prediction by web tools MicroInspector and miRanda demonstrated that DNA sequence polymorphism (DSPs) ACAA-insertion/deletion in IGF2R 3'UTR is located within the hsa-miR-657 and hsa-miR-453 binding sites. And luciferase reporter assay revealed that hsa-miR-657 acts directly at the 3'UTR of the IGF2R. Furthermore, ACAA-deletion exerted a further repression compared with ACAA-insertion, indicating that hsa-miR-657 regulates IGF2R gene expression in a polymorphic control manner. Importantly, we also demonstrated that hsa-miR-657 can translationally regulate the IGF2R expression levels in Hep G2 cells. Thus, our findings testify the possibility that the ACAA-insertion/deletion polymorphism may result in the change of IGF2R expression levels at least in part by hsa-miR-657-mediated regulation, contributing to the elucidation for the pathogenesis of type 2 diabetes and raise the possibility that miRNAs or in combination with functional DNA sequence polymorphism may be valuable in the treatment of human type 2 diabetes.

PMID:
18602895
DOI:
10.1016/j.bbrc.2008.06.102
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center