Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord

Neuroscience. 2008 Aug 13;155(2):538-55. doi: 10.1016/j.neuroscience.2008.06.008. Epub 2008 Jun 10.

Abstract

Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Animals, Newborn
  • Cell Death / drug effects
  • Culture Media / toxicity
  • Electric Stimulation / methods
  • Electrophysiology
  • Excitatory Amino Acid Agonists / pharmacology
  • In Vitro Techniques
  • Kainic Acid / toxicity
  • Locomotion*
  • Models, Neurological
  • N-Methylaspartate / pharmacology
  • Nerve Net / drug effects
  • Nerve Net / pathology
  • Nerve Net / physiopathology*
  • Neurotoxins / toxicity
  • Periodicity
  • Rats
  • Rats, Wistar
  • Receptors, Kainic Acid / drug effects
  • Receptors, Kainic Acid / metabolism*
  • Serotonin / pharmacology
  • Spinal Cord / drug effects
  • Spinal Cord / pathology
  • Spinal Cord / physiopathology*
  • Spinal Cord Injuries / chemically induced
  • Spinal Cord Injuries / pathology
  • Spinal Cord Injuries / physiopathology*
  • Time Factors

Substances

  • Culture Media
  • Excitatory Amino Acid Agonists
  • Neurotoxins
  • Receptors, Kainic Acid
  • Serotonin
  • N-Methylaspartate
  • Kainic Acid