Send to

Choose Destination
Virus Res. 2008 Oct;137(1):49-55. doi: 10.1016/j.virusres.2008.05.015. Epub 2008 Jul 10.

Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42.

Author information

Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.


The interferon (IFN) antagonists of Japanese encephalitis virus (JEV) proteins contribute to the JE pathogenesis. Most flavivirus non-structural (NS) proteins correlate with virus-induced inflammation and immune escape. NS4A proteins of West Nile virus and dengue type 2 virus have been demonstrated to inhibit IFN signaling. In this study, JEV NS4A without the C-terminal 2K domain has been demonstrated to partially block activation of an IFN-stimulated response element (ISRE)-based cis-reporter by IFN-alpha/beta. In addition, JEV NS4A significantly inhibited the phosphorylation levels of STAT1 and STAT2, but not TYK2 in the IFN-treated cells. Moreover, the N-terminus of a RNA helicase DDX42 protein identified using a phage display human brain cDNA library have been demonstrated to specifically bind to JEV NS4A in vitro using a co-immunoprecipitation assay. The interaction between JEV NS4A and RNA helicase DDX42 showed partial co-localization in human medulloblastoma TE-671 cells by confocal microscopy. Importantly, the expression of N-terminal DDX42 is able to overcome JEV-induced antagonism of IFN responses. Therefore, these results show that JEV NS4A without the C-terminal 2K domain is associated with modulation of the IFN response and the interaction of JEV NS4A with RNA helicase DDX42 could be important for JE pathogenesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center