Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2008 Sep;74(3):844-53. doi: 10.1124/mol.108.048843. Epub 2008 Jun 26.

Long-term nicotine treatment differentially regulates striatal alpha6alpha4beta2* and alpha6(nonalpha4)beta2* nAChR expression and function.

Author information

1
The Parkinson's Institute, 675 Almanor Avenue, Sunnyvale, CA 94085, USA.

Abstract

Nicotine treatment has long been associated with alterations in alpha4beta2(*) nicotinic acetylcholine receptor (nAChR) expression that modify dopaminergic function. However, the influence of long-term nicotine treatment on the alpha6beta2(*) nAChR, a subtype specifically localized on dopaminergic neurons, is less clear. Here we used voltammetry, as well as receptor binding studies, to identify the effects of nicotine on striatal alpha6beta2(*) nAChR function and expression. Long-term nicotine treatment via drinking water enhanced nonburst and burst endogenous dopamine release from rat striatal slices. In control animals, alpha6beta2(*) nAChR blockade with alpha-conotoxin MII (alpha-CtxMII) decreased release with nonburst stimulation but not with burst firing. These data in control animals suggest that varying stimulus frequencies differentially regulate alpha6beta2(*) nAChR-evoked dopamine release. In contrast, in nicotine-treated rats, alpha6beta2(*) nAChR blockade elicited a similar pattern of dopamine release with nonburst and burst firing. To elucidate the alpha6beta2(*) nAChR subtypes altered with long-term nicotine treatment, we used the novel alpha-CtxMII analog E11A in combination with alpha4 nAChR knockout mice. (125)I-alpha-CtxMII competition studies in striatum of knockout mice showed that nicotine treatment decreased the alpha6alpha4beta2(*) subtype but increased the alpha6(nonalpha4)beta2(*) nAChR population. These data indicate that alpha6beta2(*) nAChR-evoked dopamine release in nicotine-treated rats is mediated by the alpha6(nonalpha4)beta2(*) nAChR subtype and suggest that the alpha6alpha4beta2(*) nAChR and/or alpha4beta2(*) nAChR contribute to the differential effect of higher frequency stimulation on dopamine release under control conditions. Thus, alpha6beta2(*) nAChR subtypes may represent important targets for smoking cessation therapies and neurological disorders involving these receptors such as Parkinson's disease.

PMID:
18583454
PMCID:
PMC2847502
DOI:
10.1124/mol.108.048843
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center