Format

Send to

Choose Destination
Bioinformatics. 2008 Sep 1;24(17):1951-2. doi: 10.1093/bioinformatics/btn328. Epub 2008 Jun 25.

iFoldRNA: three-dimensional RNA structure prediction and folding.

Author information

1
Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Abstract

Three-dimensional RNA structure prediction and folding is of significant interest in the biological research community. Here, we present iFoldRNA, a novel web-based methodology for RNA structure prediction with near atomic resolution accuracy and analysis of RNA folding thermodynamics. iFoldRNA rapidly explores RNA conformations using discrete molecular dynamics simulations of input RNA sequences. Starting from simplified linear-chain conformations, RNA molecules (<50 nt) fold to native-like structures within half an hour of simulation, facilitating rapid RNA structure prediction. All-atom reconstruction of energetically stable conformations generates iFoldRNA predicted RNA structures. The predicted RNA structures are within 2-5 A root mean squre deviations (RMSDs) from corresponding experimentally derived structures. RNA folding parameters including specific heat, contact maps, simulation trajectories, gyration radii, RMSDs from native state, fraction of native-like contacts are accessible from iFoldRNA. We expect iFoldRNA will serve as a useful resource for RNA structure prediction and folding thermodynamic analyses.

AVAILABILITY:

http://iFoldRNA.dokhlab.org.

PMID:
18579566
PMCID:
PMC2559968
DOI:
10.1093/bioinformatics/btn328
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center