Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9000-5. doi: 10.1073/pnas.0800057105. Epub 2008 Jun 24.

Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.

Author information

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.


Promoter chromatin disassembly is a widely used mechanism to regulate eukaryotic transcriptional induction. Delaying histone H3/H4 removal from the yeast PHO5 promoter also leads to delayed removal of histones H2A/H2B, suggesting a constant equilibrium of assembly and disassembly of H2A/H2B, whereas H3/H4 disassembly is the highly regulated step. Toward understanding how H3/H4 disassembly is regulated, we observe a drastic increase in the levels of histone H3 acetylated on lysine-56 (K56ac) during promoter chromatin disassembly. Indeed, promoter chromatin disassembly is driven by Rtt109 and Asf1-dependent acetylation of H3 K56. Conversely, promoter chromatin reassembly during transcriptional repression is accompanied by decreased levels of histone H3 acetylated on lysine-56, and a mutation that prevents K56 acetylation increases the rate of transcriptional repression. As such, H3 K56 acetylation drives chromatin toward the disassembled state during transcriptional activation, whereas loss of H3 K56 acetylation drives the chromatin toward the assembled state.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center