Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H851-9. doi: 10.1152/ajpheart.01242.2007. Epub 2008 Jun 20.

Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes.

Author information

1
Dept. of Physiology, Loyola Univ. Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA.

Abstract

Ginseng botanicals are increasingly used as complementary or alternative medicines for a variety of cardiovascular diseases, yet little is known about their cellular actions in cardiac muscle. Electromechanical alternans (EMA) is a proarrhythmic cardiac abnormality that results from disturbances of intracellular Ca(2+) homeostasis. This study sought to determine whether a purified ginsenoside extract of ginseng, Re, exerts effects to suppress EMA and to gain insight into its mechanism of action. Alternans was induced by electrically pacing cardiomyocytes at room temperature. Re (> or = 10 nM) reversibly suppressed EMA recorded from cat ventricular and atrial myocytes and Langendorff-perfused cat hearts. In cat ventricular myocytes, Re reversibly suppressed intracellular Ca(2+) concentration ([Ca(2+)](i)) transient alternans. Re exerted no significant effects on baseline action potential configuration or sarcolemmal L-type Ca(2+) current (I(Ca,L)), Na(+) current, or total K(+) conductance. In human atrial myocytes, Re suppressed mechanical alternans and exerted no effect on I(Ca,L). In cat ventricular myocytes, Re increased [Ca(2+)](i) transient amplitude and decreased sarcoplasmic reticulum (SR) Ca(2+) content, resulting in an increase in fractional SR Ca(2+) release. In SR microsomes isolated from cat ventricles, Re had no effect on SR Ca(2+) uptake. Re increased the open probability of ryanodine receptors (RyRs), i.e., SR Ca(2+)-release channels, isolated from cat ventricles and incorporated into planar lipid bilayers. We concluded that ginsenoside Re suppresses EMA in cat atrial and ventricular myocytes, cat ventricular muscle, and human atrial myocytes. The effects of Re are not mediated via actions on sarcolemmal ion channels or action potential configuration. Re acts via a subcellular mechanism to enhance the opening of RyRs and thereby overcome the impaired SR Ca(2+) release underlying EMA.

PMID:
18567703
PMCID:
PMC2519214
DOI:
10.1152/ajpheart.01242.2007
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center