Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2008 Jul 1;181(1):660-8.

Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia.

Author information

Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7455, USA.


TGF-beta1 is one of the most potent endogenous immune modulators of inflammation. The molecular mechanism of its anti-inflammatory effect on the activation of the transcription factor NF-kappaB has been well-studied; however, the potential effects of TGF-beta1 on other proinflammatory signaling pathways is less clear. In this study, using the well-established LPS and the 1-methyl-4-phenylpyridinium-mediated models of Parkinson's disease, we demonstrate that TGF-beta1 exerts significant neuroprotection in both models via its anti-inflammatory properties. The neuroprotective effects of TGF-beta1 are mainly attributed to its ability to inhibit the production of reactive oxygen species from microglia during their activation or reactivation. Moreover, we demonstrate that TGF-beta1 inhibited LPS-induced NADPH oxidase (PHOX) subunit p47phox translocation from the cytosol to the membrane in microglia within 10 min. Mechanistic studies show that TGF-beta1 fails to protect dopaminergic neurons in cultures from PHOX knockout mice, and significantly reduced LPS-induced translocation of the PHOX cytosolic subunit p47phox to the cell membrane. In addition, LPS-induced ERK phosphorylation and subsequent Ser345 phosphorylation on p47phox were significantly inhibited by TGF-beta1 pretreatment. Taken together, our results show that TGF-beta1 exerted potent anti-inflammatory and neuroprotective properties, either through the prevention of the direct activation of microglia by LPS, or indirectly through the inhibition of reactive microgliosis elicited by 1-methyl-4-phenylpyridinium. The molecular mechanisms of TGF-beta1-mediated anti-inflammatory properties is through the inhibition of PHOX activity by preventing the ERK-dependent phosphorylation of Ser345 on p47phox in microglia to reduce oxidase activities induced by LPS.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center