Send to

Choose Destination
Phytochemistry. 2008 Aug;69(11):2214-24. doi: 10.1016/j.phytochem.2008.04.022. Epub 2008 Jun 16.

Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry.

Author information

Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Slechtitelů 11, CZ-78371 Olomouc, Czech Republic.


We have developed a simple, high-throughput batch immunoextraction (IAE) micropurification procedure for extracting a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) from plant tissues in solutions that are compatible with ultra-performance liquid chromatography (UPLC), thereby facilitating sensitive subsequent analysis. The UPLC system was coupled to a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray interface (ESI). Small (mg) amounts of tissues were purified by solid-phase extraction (SPE) followed by an immunoaffinity clean-up step and two fast chromatographic separations of most cytokinin metabolites (bases, ribosides, and 9-glucosides in the first, O-glucosides and nucleotides in the second). Using UPLC, the runs were up to 4-fold faster than in standard cytokinin analyses, and both retention times and injection volumes were less variable (RSDs, 0.15-0.3% and 1.0-5.5%, respectively). In multiple reaction monitoring (MRM) mode, the detection limit for most of the cytokinins analyzed was close to 1 fmol (5-25 fmol for O-glucosides and nucleotides) and the linear range spanned at least five orders of magnitude. The extraction and purification method was optimized using poplar (Populusxcanadensis Moench, cv Robusta) leaf samples, and the analytical accuracy was further validated using IAE-purified 10-day-old Arabidopsis thaliana plants spiked with 1 and 10 pmol of cytokinin derivatives. This approach can be used for rapid, sensitive qualitative and/or quantitative analysis of more than 50 natural cytokinins in minute amounts of plant tissues with high performance, robustness, and accuracy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center