Send to

Choose Destination
Biol Psychiatry. 2008 Nov 1;64(9):810-4. doi: 10.1016/j.biopsych.2008.05.001. Epub 2008 Jun 12.

Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist.

Author information

Laboratory for Clinical and Translational Studies, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.



Recent data suggest that excessive glutamatergic signaling in the prefrontal cortex may contribute to the pathophysiology of schizophrenia and that promoting presynaptic glutamate modulation via group II metabotropic glutamate 2/3 (mGlu2/3) receptor activation can exert antipsychotic efficacy. The glial glutamate and aspartate transporter (GLAST) (excitatory amino acid transporter 1 [EAAT1]) regulates extracellular glutamate levels via uptake into glia, but the consequences of GLAST dysfunction for schizophrenia are largely unknown.


We examined GLAST knockout mice (KO) for behaviors thought to model positive symptoms in schizophrenia (locomotor hyperactivity to novelty, exaggerated locomotor response to N-methyl-d-aspartate receptor [NMDAR] antagonism) and the ability of haloperidol and the mGlu2/3 agonist LY379268 to normalize novelty-induced hyperactivity.


Glial glutamate and aspartate transporter KO consistently showed locomotor hyperactivity to a novel but not familiar environment, relative to wild-type (WT) mice. The locomotor hyperactivity-inducing effects of the NMDAR antagonist MK-801 was exaggerated in GLAST KO relative to WT. Treatment with haloperidol or LY379268 normalized novelty-induced locomotor hyperactivity in GLAST KO.


Schizophrenia-related abnormalities in GLAST KO raise the possibility that loss of GLAST-mediated glutamate clearance could be a pathophysiological risk factor for the disease. Our findings provide novel support for the hypothesis that glutamate dysregulation contributes to the pathophysiology of schizophrenia and for the antipsychotic potential of mGlu2/3 agonists.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center