Format

Send to

Choose Destination
Biochemistry. 2008 Jul 8;47(27):7295-303. doi: 10.1021/bi800308q. Epub 2008 Jun 12.

Isotope sensitive branching and kinetic isotope effects in the reaction of deuterated arachidonic acids with human 12- and 15-lipoxygenases.

Author information

1
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.

Abstract

Lipoxygenases (LOs) catalyze lipid peroxidation and have been implicated in a number of human diseases connected to oxidative stress and inflammation. These enzymes have also attracted considerable attention due to large kinetic isotope effects (30-80) for the rate-limiting hydrogen abstraction step with linoleic acid (LA) as substrate. Herein, we report kinetic isotope effects (KIEs) in the reactions of three human LOs (platelet 12-hLO, reticulocyte 15-hLO-1, and epithelial 15-hLO-2) with arachidonic acid (AA). Surprisingly, the observed KIEs with AA were much smaller than the previously reported values with LA. Investigation into the origins for the smaller KIEs led to the discovery of isotope sensitive branching of the reaction pathways. Product distribution analysis demonstrated an inversion in the regioselectivity of 15-hLO-1, with hydrogen abstraction from C13 being the major pathway with unlabeled AA but abstraction from C10 predominating when the methylene group at position 13 was deuterated. Smaller but clear changes in regioselectivity were also observed for 12-hLO and 15-hLO-2.

PMID:
18547056
PMCID:
PMC2574664
DOI:
10.1021/bi800308q
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center