Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part B Rev. 2008 Jun;14(2):199-215. doi: 10.1089/ten.teb.2007.0435.

Fibrin: a versatile scaffold for tissue engineering applications.

Author information

Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.


Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center