Format

Send to

Choose Destination
See comment in PubMed Commons below
Biosens Bioelectron. 2008 Nov 15;24(3):442-7. doi: 10.1016/j.bios.2008.04.025. Epub 2008 May 4.

Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.

Author information

1
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

Abstract

In this work, the excellent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors. The high density of edge-plane-like defective sites and high specific surface area of OMCs could be responsible for the electrocatalytic behavior at OMCs modified glassy carbon electrode (OMCs/GE), which induced a substantial decrease in the overpotential of NADH and H(2)O(2) oxidation reaction compared to carbon nanotubes modified glassy carbon electrode (CNTs/GE). Such ability of OMCs permits effective low-potential amperometric biosensing of ethanol and glucose, respectively, at Nafion/ADH-OMCs/GE and Nafion/GOD-OMCs/GE. Especially, as an amperometric glucose biosensor, Nafion/GOD-OMCs/GE showed large determination range (500-15,000 micromoll(-1)), high sensitivity (0.053 nA micromol(-1)), fast (9+/-1s) and stable response (amperometric response retained 90% of the initial activity after 10h stirring of 2 mmoll(-1) glucose solution) to glucose as well as the effective discrimination to the possible interferences, which may make it to readily satisfy the need for the routine clinical diagnosis of diabetes. By comparing the electrochemical performance of OMCs with that of CNTs as electrode material for the construction of ADH- and GOD-biosensors in this work, we reveal that OMCs could be a favorable and promising carbon electrode material for constructing other electrochemical dehydrogenase- and oxidase-based biosensors, which may have wide potential applications in biocatalysis, bioelectronics and biofuel cells.

PMID:
18541421
DOI:
10.1016/j.bios.2008.04.025
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center