Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2008 Jul;173(1):170-81. doi: 10.2353/ajpath.2008.071146. Epub 2008 Jun 5.

Inhibition of proteasome activity promotes the correct localization of disease-causing alpha-sarcoglycan mutants in HEK-293 cells constitutively expressing beta-, gamma-, and delta-sarcoglycan.

Author information

1
Department of Biomedical Sciences, University of Padova, Padova, Italy.

Abstract

Sarcoglycanopathies are progressive muscle-wasting disorders caused by genetic defects of four proteins, alpha-, beta-, gamma-, and delta-sarcoglycan, which are elements of a key transmembrane complex of striated muscle. The proper assembly of the sarcoglycan complex represents a critical issue of sarcoglycanopathies, as several mutations severely perturb tetramer formation. Misfolded proteins are generally degraded through the cell's quality-control system; however, this can also lead to the removal of some functional polypeptides. To explore whether it is possible to rescue sarcoglycan mutants by preventing their degradation, we generated a heterologous cell system, based on human embryonic kidney (HEK) 293 cells, constitutively expressing three (beta, gamma, and delta) of the four sarcoglycans. In these betagammadelta-HEK cells, the lack of alpha-sarcoglycan prevented complex formation and cell surface localization, wheras the presence of alpha-sarcoglycan allowed maturation and targeting of the tetramer. As in muscles of sarcoglycanopathy patients, transfection of betagammadelta-HEK cells with disease-causing alpha-sarcoglycan mutants led to dramatic reduction of the mutated proteins and the absence of the complex from the cell surface. Proteasomal inhibition reduced the degradation of mutants and facilitated the assembly and targeting of the sarcoglycan complex to the plasma membrane. These data provide important insights for the potential development of pharmacological therapies for sarcoglycanopathies.

PMID:
18535179
PMCID:
PMC2438295
DOI:
10.2353/ajpath.2008.071146
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center