Send to

Choose Destination
Biomaterials. 2008 Sep;29(26):3561-73. doi: 10.1016/j.biomaterials.2008.05.005. Epub 2008 Jun 4.

Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).

Author information

Vinca Institute of Nuclear Sciences, Laboratory for Atomic Physics, P.O. Box 522, 11000 Belgrade, Serbia.


Fullerene (C60), a third carbon allotrope, is a classical engineered material with the potential application in biomedicine. One of the biologically most relevant features of C60 is the ability to quench various free radicals, behaving as a "free radical sponge". Conversely, photosensitization of C60 leads to its transition to a long-lived triplet excited state and the subsequent energy or electron transfer to molecular oxygen, yielding highly reactive singlet oxygen (1O2) or superoxide anion (O2-), respectively. These reactive oxygen species (ROS) react with a wide range of biological targets and are known to be involved in both cellular signaling and cell damage. Therefore, the dual property of fullerenes to either quench or generate cell-damaging ROS could be potentially exploited for their development as cytoprotective or cytotoxic anticancer/antimicrobial agents. However, the attempts to that effect have been hampered by the extremely low water solubility of C60, and by the fact that solubilization procedures profoundly influence the ROS-generating/quenching properties of C60, either through chemical modification or through formation of complex nanoscale particles with different photophysical properties. We here analyze the mechanisms and biological consequences of ROS generation/quenching by C60, focusing on the influence that different physico-chemical alterations exert on its ROS-related biological behavior.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center