Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals

J Chem Phys. 2008 May 14;128(18):184112. doi: 10.1063/1.2912041.

Abstract

A new method based on absolutely localized molecular orbitals (ALMOs) is proposed to measure the degree of intermolecular electron density delocalization (charge transfer) in molecular complexes. ALMO charge transfer analysis (CTA) enables separation of the forward and backward charge transfer components for each pair of molecules in the system. The key feature of ALMO CTA is that all charge transfer terms have corresponding well defined energetic effects that measure the contribution of the given term to the overall energetic stabilization of the system. To simplify analysis of charge transfer effects, the concept of chemically significant complementary occupied-virtual orbital pairs (COVPs) is introduced. COVPs provide a simple description of intermolecular electron transfer effects in terms of just a few localized orbitals. ALMO CTA is applied to understand fundamental aspects of donor-acceptor interactions in borane adducts, synergic bonding in classical and nonclassical metal carbonyls, and multiple intermolecular hydrogen bonds in a complex of isocyanuric acid and melamine. These examples show that the ALMO CTA results are generally consistent with the existing conceptual description of intermolecular bonding. The results also show that charge transfer and the energy lowering due to charge transfer are not proportional to each other, and some interesting differences emerge which are discussed. Additionally, according to ALMO CTA, the amount of electron density transferred between molecules is significantly smaller than charge transfer estimated from various population analysis methods.