Format

Send to

Choose Destination
See comment in PubMed Commons below
Bioorg Med Chem. 2008 Jul 1;16(13):6501-8. doi: 10.1016/j.bmc.2008.05.032. Epub 2008 May 17.

Unsymmetric aryl-alkyl disulfide growth inhibitors of methicillin-resistant Staphylococcus aureus and Bacillus anthracis.

Author information

1
Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of Chemistry, 4202 East Fowler Avenue, CHE 205, University of South Florida, Tampa, FL 33620, USA. eturos@cas.usf.edu

Abstract

This study describes the antibacterial properties of synthetically produced mixed aryl-alkyl disulfide compounds as a means to control the growth of Staphylococcus aureus and Bacillus anthracis. Some of these compounds exerted strong in vitro bioactivity. Our results indicate that among the 12 different aryl substituents examined, nitrophenyl derivatives provide the strongest antibiotic activities. This may be the result of electronic activation of the arylthio moiety as a leaving group for nucleophilic attack on the disulfide bond. Small alkyl residues on the other sulfur provide the best activity as well, which for different bacteria appears to be somewhat dependent on the nature of the alkyl moiety. The mechanism of action of these lipophilic disulfides is likely similar to that of previously reported N-thiolated beta-lactams, which have been shown to produce alkyl-CoA disulfides through a thiol-disulfide exchange within the cytoplasm, ultimately inhibiting type II fatty acid synthesis. However, the mixed alkyl-CoA disulfides themselves show no antibacterial activity, presumably due to the inability of the highly polar compounds to cross the bacterial cell membrane. These structurally simple disulfides have been found to inhibit beta-ketoacyl-acyl carrier protein synthase III, or FabH, a key enzyme in type II fatty acid biosynthesis, and thus may serve as new leads to the development of effective antibacterials for MRSA and anthrax infections.

PMID:
18524602
PMCID:
PMC2526022
DOI:
10.1016/j.bmc.2008.05.032
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center