Send to

Choose Destination
See comment in PubMed Commons below
Phys Med Biol. 2008 Jun 21;53(12):3343-64. doi: 10.1088/0031-9155/53/12/019. Epub 2008 Jun 3.

Dosimetric impact of intrafraction motion for compensator-based proton therapy of lung cancer.

Author information

School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA.


Compensator-based proton therapy of lung cancer using an un-gated treatment while allowing the patient to breathe freely requires a compensator design that ensures tumor coverage throughout respiration. Our investigation had two purposes: one is to investigate the dosimetric impact when a composite compensator correction is applied, or is not, and the other one is to evaluate the significance of using different respiratory phases as the reference computed tomography (CT) for treatment planning dose calculations. A 4D-CT-based phantom study and a real patient treatment planning study were performed. A 3D MIP dataset generated over all phases of the acquired 4D-CT scans was adopted to design the field-specific composite aperture and compensator. In the phantom study, the MIP-based compensator design plan named plan D was compared to the other three plans, in which average intensity projection (AIP) images in conjunction with the composite target volume contour copied from the MIP images were used. Relative electron densities within the target envelope were assigned either to original values from the AIP image dataset (plan A) or to predetermined values, 0.8 (plan B) and 0.9 (plan C). In the patient study, the dosimetric impact of a compensator design based on the MIP images (plan ITV(MIP)) was compared to designs based on end-of-inhale (EOI) (plan ITV(EOI)) and middle-of-exhale (MOE) CT images (plan ITV(MOE)). The dose distributions were recalculated for each phase. Throughout the ten phases, it shows that D(GTV)(min) changed slightly from 86% to 89% (SD = 0.9%) of prescribed dose (PD) in the MIP plan, while varying greatly from 10% to 79% (SD = 26.7%) in plan A, 17% to 73% (SD = 22.5%) in plan B and 53% to 73% (SD = 6.8%) in plan C. The same trend was observed for D(GTV)(mean) and V95 with less amplitude. In the MIP-based plan ITV(MIP), D(GTV)(mean) was almost identically equal to 95% in each phase (SD = 0.5%). The patient study verified that the MIP approach increased the minimum value of D99 of the clinical target volume (CTV) by 58.8% compared to plan ITV(EOI) and 12.9% compared to plan ITV(MOE). Minimum values of D99 were 37.60%, 83.50% and 96.40% for plan ITV(EOI), plan ITV(MOE) and plan ITV(MIP), respectively. Standard deviations of D99 were significantly decreased (SD = 0.5%) in the MIP plan as compared to plan ITV(EOI) (SD = 18.9%) or plan ITV(MOE) (SD = 4.0%). These studies demonstrate that the use of MIP images to design the patient-specific composite compensators provide superior and consistent tumor coverage throughout the entire respiratory cycle whilst maintaining a low average normal lung dose. The additional benefit of the MIP-based design approach is that the dose calculation can be implemented on any single phase as long as it uses the aperture and compensator optimized from the MIP images. This also reduces the requirement for contouring on all breathing phases down to just one.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center