Format

Send to

Choose Destination
Cell Transplant. 2008;17(4):409-15.

Biocompatibility of PEG-based hydrogels in primate brain.

Author information

1
Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO 80045, USA. kimberly.bjugstad@uchsc.edu

Abstract

Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.

PMID:
18522243
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center