Send to

Choose Destination
J Food Prot. 2008 May;71(5):903-7.

Inactivation of MS2 F(+) coliphage on lettuce by a combination of UV light and hydrogen peroxide.

Author information

Department of Food Science, University of Guelph, Guelph, Ontario, Canada.


The efficacy of a produce decontamination method based on a combination of UV light (254 nm) and hydrogen peroxide (H2O2) to inactivate the MS2 F(+) coliphage inoculated onto iceberg lettuce was evaluated. Lettuce inoculated with 6.57 log PFU of MS2 was reduced by 0.5 to 1.0 log unit when illuminated with UV light alone for 20 to 60 s (12.64 to 18.96 mJ/cm2). In contrast, a 3-log reduction in MS2 was achieved with 2% (vol/vol) H2O2 spray delivered at 50 degrees C. No significant increase in log count reduction (LCR) was observed when H2O2 and UV light were applied simultaneously. However, H2O2 sprayed onto lettuce samples for 10 s, followed by a further 20-s UV illumination, resulted in an LCR of 4.12 that compares with the 1.67 obtained with 200 ppm of calcium hypochlorite wash. No further increase in MS2 inactivation was achieved by the use of either longer H2O2 spray or UV illumination times. The extent of MS2 reduction was significantly (P < 0.05) decreased when the H2O2 spray was delivered at 10 or 25 degrees C compared with 50 degrees C. In the course of aerobic storage at 4 degrees C, lettuce treated with UV light and H2O2 (10 or 25 degrees C) developed discoloration (polyphenol accumulation) within 6 days. In contrast, lettuce treated with UV light and H2O2 at 50 degrees C developed less discoloration within this time period and was comparable to untreated controls. This study demonstrated that the combination of UV light and H2O2 represents an alternative to hypochlorite-based washes to reduce the carriage of viruses on fresh produce.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center